Copied to
clipboard

?

G = C4220D6order 192 = 26·3

18th semidirect product of C42 and D6 acting via D6/C3=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C4220D6, C6.1242+ (1+4), (C4×S3)⋊4D4, (C2×Q8)⋊21D6, C4.32(S3×D4), C22⋊C420D6, D6.45(C2×D4), C4.4D48S3, C12.61(C2×D4), Dic3⋊D439C2, D6⋊D423C2, C4⋊D1214C2, C123D424C2, (C4×C12)⋊22C22, D6⋊C423C22, (C2×D4).171D6, (C2×D12)⋊9C22, (C6×Q8)⋊12C22, C6.88(C22×D4), C422S319C2, C2.48(D4○D12), (C2×C6).218C24, Dic3.50(C2×D4), C12.23D421C2, (C2×C12).186C23, Dic3⋊C455C22, C34(C22.29C24), (C4×Dic3)⋊35C22, (C6×D4).153C22, C23.50(C22×S3), (C22×C6).48C23, (S3×C23).63C22, C22.239(S3×C23), (C22×S3).213C23, (C2×Dic3).113C23, (C2×S3×D4)⋊16C2, C2.61(C2×S3×D4), (S3×C2×C4)⋊25C22, (C2×Q83S3)⋊10C2, (C3×C4.4D4)⋊10C2, (C2×C3⋊D4)⋊22C22, (C3×C22⋊C4)⋊28C22, (C2×C4).193(C22×S3), SmallGroup(192,1233)

Series: Derived Chief Lower central Upper central

C1C2×C6 — C4220D6
C1C3C6C2×C6C22×S3S3×C23C2×S3×D4 — C4220D6
C3C2×C6 — C4220D6

Subgroups: 1104 in 334 conjugacy classes, 103 normal (29 characteristic)
C1, C2, C2 [×2], C2 [×8], C3, C4 [×2], C4 [×8], C22, C22 [×30], S3 [×6], C6, C6 [×2], C6 [×2], C2×C4, C2×C4 [×4], C2×C4 [×11], D4 [×22], Q8 [×2], C23 [×2], C23 [×13], Dic3 [×2], Dic3 [×2], C12 [×2], C12 [×4], D6 [×2], D6 [×22], C2×C6, C2×C6 [×6], C42, C42, C22⋊C4 [×4], C22⋊C4 [×6], C4⋊C4 [×2], C22×C4 [×3], C2×D4, C2×D4 [×18], C2×Q8, C4○D4 [×4], C24 [×2], C4×S3 [×4], C4×S3 [×4], D12 [×12], C2×Dic3, C2×Dic3 [×2], C3⋊D4 [×8], C2×C12, C2×C12 [×4], C3×D4 [×2], C3×Q8 [×2], C22×S3, C22×S3 [×4], C22×S3 [×8], C22×C6 [×2], C42⋊C2, C22≀C2 [×4], C4⋊D4 [×4], C4.4D4, C4.4D4, C41D4 [×2], C22×D4, C2×C4○D4, C4×Dic3, Dic3⋊C4 [×2], D6⋊C4 [×6], C4×C12, C3×C22⋊C4 [×4], S3×C2×C4, S3×C2×C4 [×2], C2×D12 [×2], C2×D12 [×6], S3×D4 [×4], Q83S3 [×4], C2×C3⋊D4 [×6], C6×D4, C6×Q8, S3×C23 [×2], C22.29C24, C422S3, C4⋊D12, D6⋊D4 [×4], Dic3⋊D4 [×4], C123D4, C12.23D4, C3×C4.4D4, C2×S3×D4, C2×Q83S3, C4220D6

Quotients:
C1, C2 [×15], C22 [×35], S3, D4 [×4], C23 [×15], D6 [×7], C2×D4 [×6], C24, C22×S3 [×7], C22×D4, 2+ (1+4) [×2], S3×D4 [×2], S3×C23, C22.29C24, C2×S3×D4, D4○D12 [×2], C4220D6

Generators and relations
 G = < a,b,c,d | a4=b4=c6=d2=1, ab=ba, cac-1=dad=a-1, cbc-1=a2b-1, dbd=b-1, dcd=c-1 >

Smallest permutation representation
On 48 points
Generators in S48
(1 28 9 25)(2 26 7 29)(3 30 8 27)(4 24 12 21)(5 22 10 19)(6 20 11 23)(13 42 35 46)(14 47 36 37)(15 38 31 48)(16 43 32 39)(17 40 33 44)(18 45 34 41)
(1 46 5 39)(2 44 6 37)(3 48 4 41)(7 40 11 47)(8 38 12 45)(9 42 10 43)(13 22 16 28)(14 26 17 20)(15 24 18 30)(19 32 25 35)(21 34 27 31)(23 36 29 33)
(1 2 3)(4 5 6)(7 8 9)(10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)
(1 9)(2 8)(3 7)(4 11)(5 10)(6 12)(13 16)(14 15)(17 18)(20 24)(21 23)(26 30)(27 29)(31 36)(32 35)(33 34)(37 38)(39 42)(40 41)(43 46)(44 45)(47 48)

G:=sub<Sym(48)| (1,28,9,25)(2,26,7,29)(3,30,8,27)(4,24,12,21)(5,22,10,19)(6,20,11,23)(13,42,35,46)(14,47,36,37)(15,38,31,48)(16,43,32,39)(17,40,33,44)(18,45,34,41), (1,46,5,39)(2,44,6,37)(3,48,4,41)(7,40,11,47)(8,38,12,45)(9,42,10,43)(13,22,16,28)(14,26,17,20)(15,24,18,30)(19,32,25,35)(21,34,27,31)(23,36,29,33), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,9)(2,8)(3,7)(4,11)(5,10)(6,12)(13,16)(14,15)(17,18)(20,24)(21,23)(26,30)(27,29)(31,36)(32,35)(33,34)(37,38)(39,42)(40,41)(43,46)(44,45)(47,48)>;

G:=Group( (1,28,9,25)(2,26,7,29)(3,30,8,27)(4,24,12,21)(5,22,10,19)(6,20,11,23)(13,42,35,46)(14,47,36,37)(15,38,31,48)(16,43,32,39)(17,40,33,44)(18,45,34,41), (1,46,5,39)(2,44,6,37)(3,48,4,41)(7,40,11,47)(8,38,12,45)(9,42,10,43)(13,22,16,28)(14,26,17,20)(15,24,18,30)(19,32,25,35)(21,34,27,31)(23,36,29,33), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,9)(2,8)(3,7)(4,11)(5,10)(6,12)(13,16)(14,15)(17,18)(20,24)(21,23)(26,30)(27,29)(31,36)(32,35)(33,34)(37,38)(39,42)(40,41)(43,46)(44,45)(47,48) );

G=PermutationGroup([(1,28,9,25),(2,26,7,29),(3,30,8,27),(4,24,12,21),(5,22,10,19),(6,20,11,23),(13,42,35,46),(14,47,36,37),(15,38,31,48),(16,43,32,39),(17,40,33,44),(18,45,34,41)], [(1,46,5,39),(2,44,6,37),(3,48,4,41),(7,40,11,47),(8,38,12,45),(9,42,10,43),(13,22,16,28),(14,26,17,20),(15,24,18,30),(19,32,25,35),(21,34,27,31),(23,36,29,33)], [(1,2,3),(4,5,6),(7,8,9),(10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48)], [(1,9),(2,8),(3,7),(4,11),(5,10),(6,12),(13,16),(14,15),(17,18),(20,24),(21,23),(26,30),(27,29),(31,36),(32,35),(33,34),(37,38),(39,42),(40,41),(43,46),(44,45),(47,48)])

Matrix representation G ⊆ GL6(𝔽13)

1200000
0120000
000037
0000610
003700
0061000
,
010000
1200000
000010
000001
001000
000100
,
1200000
010000
000100
0012100
0000012
0000112
,
100000
0120000
0012100
000100
0000121
000001

G:=sub<GL(6,GF(13))| [12,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,3,6,0,0,0,0,7,10,0,0,3,6,0,0,0,0,7,10,0,0],[0,12,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,1,0,0],[12,0,0,0,0,0,0,1,0,0,0,0,0,0,0,12,0,0,0,0,1,1,0,0,0,0,0,0,0,1,0,0,0,0,12,12],[1,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,1,1,0,0,0,0,0,0,12,0,0,0,0,0,1,1] >;

36 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I2J2K 3 4A4B4C4D4E4F4G4H4I4J6A6B6C6D6E12A···12F12G12H
order122222222222344444444446666612···121212
size11114466121212122224444661212222884···488

36 irreducible representations

dim1111111111222222444
type+++++++++++++++++++
imageC1C2C2C2C2C2C2C2C2C2S3D4D6D6D6D62+ (1+4)S3×D4D4○D12
kernelC4220D6C422S3C4⋊D12D6⋊D4Dic3⋊D4C123D4C12.23D4C3×C4.4D4C2×S3×D4C2×Q83S3C4.4D4C4×S3C42C22⋊C4C2×D4C2×Q8C6C4C2
# reps1114411111141411224

In GAP, Magma, Sage, TeX

C_4^2\rtimes_{20}D_6
% in TeX

G:=Group("C4^2:20D6");
// GroupNames label

G:=SmallGroup(192,1233);
// by ID

G=gap.SmallGroup(192,1233);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,219,675,570,297,192,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=c^6=d^2=1,a*b=b*a,c*a*c^-1=d*a*d=a^-1,c*b*c^-1=a^2*b^-1,d*b*d=b^-1,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽